3.1.3 \(\int \frac {\tan ^2(x)}{a+a \cos (x)} \, dx\) [3]

Optimal. Leaf size=15 \[ -\frac {\tanh ^{-1}(\sin (x))}{a}+\frac {\tan (x)}{a} \]

[Out]

-arctanh(sin(x))/a+tan(x)/a

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 15, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {2785, 3852, 8, 3855} \begin {gather*} \frac {\tan (x)}{a}-\frac {\tanh ^{-1}(\sin (x))}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tan[x]^2/(a + a*Cos[x]),x]

[Out]

-(ArcTanh[Sin[x]]/a) + Tan[x]/a

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2785

Int[((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_.)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/a, Int[S
ec[e + f*x]^2*(g*Tan[e + f*x])^p, x], x] - Dist[1/(b*g), Int[Sec[e + f*x]*(g*Tan[e + f*x])^(p + 1), x], x] /;
FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && NeQ[p, -1]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\tan ^2(x)}{a+a \cos (x)} \, dx &=-\frac {\int \sec (x) \, dx}{a}+\frac {\int \sec ^2(x) \, dx}{a}\\ &=-\frac {\tanh ^{-1}(\sin (x))}{a}-\frac {\text {Subst}(\int 1 \, dx,x,-\tan (x))}{a}\\ &=-\frac {\tanh ^{-1}(\sin (x))}{a}+\frac {\tan (x)}{a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(39\) vs. \(2(15)=30\).
time = 0.08, size = 39, normalized size = 2.60 \begin {gather*} \frac {\log \left (\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )\right )-\log \left (\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )+\tan (x)}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tan[x]^2/(a + a*Cos[x]),x]

[Out]

(Log[Cos[x/2] - Sin[x/2]] - Log[Cos[x/2] + Sin[x/2]] + Tan[x])/a

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(44\) vs. \(2(15)=30\).
time = 0.08, size = 45, normalized size = 3.00

method result size
risch \(\frac {2 i}{a \left ({\mathrm e}^{2 i x}+1\right )}-\frac {\ln \left ({\mathrm e}^{i x}+i\right )}{a}+\frac {\ln \left ({\mathrm e}^{i x}-i\right )}{a}\) \(44\)
default \(\frac {-\frac {1}{\tan \left (\frac {x}{2}\right )-1}+\ln \left (\tan \left (\frac {x}{2}\right )-1\right )-\frac {1}{\tan \left (\frac {x}{2}\right )+1}-\ln \left (\tan \left (\frac {x}{2}\right )+1\right )}{a}\) \(45\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(x)^2/(a+a*cos(x)),x,method=_RETURNVERBOSE)

[Out]

4/a*(-1/4/(tan(1/2*x)-1)+1/4*ln(tan(1/2*x)-1)-1/4/(tan(1/2*x)+1)-1/4*ln(tan(1/2*x)+1))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 61 vs. \(2 (15) = 30\).
time = 0.27, size = 61, normalized size = 4.07 \begin {gather*} -\frac {\log \left (\frac {\sin \left (x\right )}{\cos \left (x\right ) + 1} + 1\right )}{a} + \frac {\log \left (\frac {\sin \left (x\right )}{\cos \left (x\right ) + 1} - 1\right )}{a} + \frac {2 \, \sin \left (x\right )}{{\left (a - \frac {a \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}}\right )} {\left (\cos \left (x\right ) + 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(x)^2/(a+a*cos(x)),x, algorithm="maxima")

[Out]

-log(sin(x)/(cos(x) + 1) + 1)/a + log(sin(x)/(cos(x) + 1) - 1)/a + 2*sin(x)/((a - a*sin(x)^2/(cos(x) + 1)^2)*(
cos(x) + 1))

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 33 vs. \(2 (15) = 30\).
time = 0.40, size = 33, normalized size = 2.20 \begin {gather*} -\frac {\cos \left (x\right ) \log \left (\sin \left (x\right ) + 1\right ) - \cos \left (x\right ) \log \left (-\sin \left (x\right ) + 1\right ) - 2 \, \sin \left (x\right )}{2 \, a \cos \left (x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(x)^2/(a+a*cos(x)),x, algorithm="fricas")

[Out]

-1/2*(cos(x)*log(sin(x) + 1) - cos(x)*log(-sin(x) + 1) - 2*sin(x))/(a*cos(x))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {\tan ^{2}{\left (x \right )}}{\cos {\left (x \right )} + 1}\, dx}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(x)**2/(a+a*cos(x)),x)

[Out]

Integral(tan(x)**2/(cos(x) + 1), x)/a

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 45 vs. \(2 (15) = 30\).
time = 0.45, size = 45, normalized size = 3.00 \begin {gather*} -\frac {\log \left ({\left | \tan \left (\frac {1}{2} \, x\right ) + 1 \right |}\right )}{a} + \frac {\log \left ({\left | \tan \left (\frac {1}{2} \, x\right ) - 1 \right |}\right )}{a} - \frac {2 \, \tan \left (\frac {1}{2} \, x\right )}{{\left (\tan \left (\frac {1}{2} \, x\right )^{2} - 1\right )} a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(x)^2/(a+a*cos(x)),x, algorithm="giac")

[Out]

-log(abs(tan(1/2*x) + 1))/a + log(abs(tan(1/2*x) - 1))/a - 2*tan(1/2*x)/((tan(1/2*x)^2 - 1)*a)

________________________________________________________________________________________

Mupad [B]
time = 0.35, size = 30, normalized size = 2.00 \begin {gather*} -\frac {2\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {x}{2}\right )\right )}{a}-\frac {2\,\mathrm {tan}\left (\frac {x}{2}\right )}{a\,\left ({\mathrm {tan}\left (\frac {x}{2}\right )}^2-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(x)^2/(a + a*cos(x)),x)

[Out]

- (2*atanh(tan(x/2)))/a - (2*tan(x/2))/(a*(tan(x/2)^2 - 1))

________________________________________________________________________________________